Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Int J Mol Sci ; 24(4)2023 Feb 18.
Статья в английский | MEDLINE | ID: covidwho-2253656

Реферат

Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.


Тема - темы
Microbiota , Virus Diseases , Male , Female , Humans , RNA, Ribosomal, 16S/genetics , Genes, rRNA , Nasopharynx/microbiology , Microbiota/genetics , Bacteria/genetics , Aging , Virus Diseases/genetics
2.
FEMS Microbiol Rev ; 2022 Nov 02.
Статья в английский | MEDLINE | ID: covidwho-2245897

Реферат

Although COVID-19 has only recently appeared, research studies have already developed and implemented many animal models for deciphering the secrets of the disease and provided insights into the biology of SARS-CoV-2. However, there are several major factors that complicate the study of this virus in model organisms, such as the poor infectivity of clinical isolates of SARS-CoV-2 in some model species, and the absence of a persistent infection, immunopathology, severe acute respiratory distress syndrome, and none of the systemic complications which characterize COVID-19 clinically. Another important limitation is that SARS-CoV-2 mainly causes severe COVID-19 in older people with comorbidities, which represents a serious problem when attempting to use young and immunologically naïve laboratory animals in COVID-19 testing. We review here the main animal models developed so far to study COVID-19 and the unique advantages of the zebrafish model that may help to contribute to understand this disease, in particular to the identification and repurposing of drugs to treat COVID-19, to reveal the mechanism of action and side-effects of Spike-based vaccines, and to decipher the high susceptibility of aged people to COVID-19.

3.
Emerg Microbes Infect ; 12(1): e2165970, 2023 Dec.
Статья в английский | MEDLINE | ID: covidwho-2228536

Реферат

The development of novel culture-independent techniques of microbial identification has allowed a rapid progress in the knowledge of the nasopharyngeal microbiota and its role in health and disease. Thus, it has been demonstrated that the nasopharyngeal microbiota defends the host from invading pathogens that enter the body through the upper airways by participating in the modulation of innate and adaptive immune responses. The current COVID-19 pandemic has created an urgent need for fast-track research, especially to identify and characterize biomarkers to predict the disease severity and outcome. Since the nasopharyngeal microbiota diversity and composition could potentially be used as a prognosis biomarker for COVID-19 patients, which would pave the way for strategies aiming to reduce the disease severity by modifying such microbiota, dozens of research articles have already explored the possible associations between changes in the nasopharyngeal microbiota and the severity or outcome of COVID-19 patients. Unfortunately, results are controversial, as many studies with apparently similar experimental designs have reported contradictory data. Herein we put together, compare, and discuss all the relevant results on this issue reported to date. Even more interesting, we discuss in detail which are the limitations of these studies, that probably are the main sources of the high variability observed. Therefore, this work is useful not only for people interested in current knowledge about the relationship between the nasopharyngeal microbiota and COVID-19, but also for researchers who want to go further in this field while avoiding the limitations and variability of previous works.


Тема - темы
COVID-19 , Microbiota , Humans , Pandemics , Nasopharynx , Nose
4.
Dev Comp Immunol ; 140: 104626, 2023 03.
Статья в английский | MEDLINE | ID: covidwho-2236467

Реферат

One of the most studied defense mechanisms against invading pathogens, including viruses, are Toll-like receptors (TLRs). Among them, TLR3, TLR7, TLR8 and TLR9 detect different forms of viral nucleic acids in endosomal compartments, whereas TLR2 and TLR4 recognize viral structural and nonstructural proteins outside the cell. Although many different TLRs have been shown to be involved in SARS-CoV-2 infection and detection of different structural proteins, most studies have been performed in vitro and the results obtained are rather contradictory. In this study, we report using the unique advantages of the zebrafish model for in vivo imaging and gene editing that the S1 domain of the Spike protein from the Wuhan strain (S1WT) induced hyperinflammation in zebrafish larvae via a Tlr2/Myd88 signaling pathway and independently of interleukin-1ß production. In addition, S1WT also triggered emergency myelopoiesis, but in this case through a Tlr2/Myd88-independent signaling pathway. These results shed light on the mechanisms involved in the fish host responses to viral proteins.


Тема - темы
COVID-19 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 2 , Animals , COVID-19/immunology , Myeloid Differentiation Factor 88/genetics , SARS-CoV-2 , Toll-Like Receptor 2/genetics , Zebrafish/genetics
5.
Sci Adv ; 8(37): eabo0732, 2022 09 16.
Статья в английский | MEDLINE | ID: covidwho-2038223

Реферат

The coronavirus disease 2019 (COVID-19) pandemic turned the whole world upside down in a short time. One of the main challenges faced has been to understand COVID-19-associated life-threatening hyperinflammation, the so-called cytokine storm syndrome (CSS). We report here the proinflammatory role of Spike (S) proteins from different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern in zebrafish. We found that wild-type/Wuhan variant S1 (S1WT) promoted neutrophil and macrophage recruitment, local and systemic hyperinflammation, emergency myelopoiesis, and hemorrhages. In addition, S1γ was more proinflammatory S1δ was less proinflammatory than S1WT, and, notably, S1ß promoted delayed and long-lasting inflammation. Pharmacological inhibition of the canonical inflammasome alleviated S1-induced inflammation and emergency myelopoiesis. In contrast, genetic inhibition of angiotensin-converting enzyme 2 strengthened the proinflammatory activity of S1, and angiotensin (1-7) fully rescued S1-induced hyperinflammation and hemorrhages. These results shed light into the mechanisms orchestrating the COVID-19-associated CSS and the host immune response to different SARS-CoV-2 S protein variants.


Тема - темы
COVID-19 , Inflammation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , Animals , Humans , Inflammasomes , Inflammation/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Zebrafish/metabolism
Критерии поиска